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ABSTRACT

Here sea ice concentration derived from the Special Sensor Microwave Imager/Sounder and thickness derived

from the Soil Moisture and Ocean Salinity and CryoSat-2 satellites are assimilated in the National Centers for

Environmental Prediction Climate Forecast System using a localized error subspace transform ensemble Kalman

filter (LESTKF). Three ensemble-based hindcasts are conducted to examine impacts of the assimilation onArctic

sea ice prediction, including CTL (without any assimilation), LESTKF-1 (with initial sea ice assimilation only),

and LESTKF-E5 (with every 5-day sea ice assimilation). Assessment with the assimilated satellite products and

independent sea ice thickness datasets shows that assimilating sea ice concentration and thickness leads to im-

provedArctic sea ice prediction. LESTKF-1 improves sea ice forecast initially. The initial improvement gradually

diminishes after;3-week integration for sea ice extent but remains quite steady through the integration for sea ice

thickness. Large biases in both the ice extent and thickness inCTLare remarkably reduced through the hindcast in

LESTKF-E5. Additional numerical experiments suggest that the hindcast with sea ice thickness assimilation

dramatically reduces systematic bias in the predicted ice thickness compared with sea ice concentration assimi-

lation only or without any assimilation, which also benefits the prediction of sea ice extent and concentration due

to their covariability.Hence, the corrected state of sea ice thicknesswould aid in the forecast procedure. Increasing

the number of ensemblemembers or extending the integration period to generate estimates of initial model states

and uncertainties seems to have small impacts on sea ice prediction relative to LESTKF-E5.

1. Introduction

Arctic sea ice extent and thickness have experienced

dramatic change in the past few decades. Sea ice extent

has declined for all months since the late 1970s (e.g.,

Comiso 2012; Cavalieri and Parkinson 2012); that is,

September ice extent has declined 13.3%decade21

during 1979–2016, which is underestimated by most of

the global climate models that participated in phase 5 of

the Coupled Model Intercomparison Project (CMIP5)

(Stroeve et al. 2012). Accompanying the rapid decline of

the ice extent has been a thinning of the ice pack; that is,Corresponding author: Zhiqiang Chen, czq@lasg.iap.ac.cn
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compared to the submarine data during 1958–76, the Ice,

Cloud, and Land Elevation Satellite (ICESat) data

during 2003–08 show that the mean ice thickness has

decreased by ;1.6m (e.g., Kwok and Rothrock 2009).

This is largely a result of thinner first-year ice replacing

thicker multiyear ice (e.g., Maslanik et al. 2011). Rapid

change of Arctic sea ice has increased interannual var-

iability in the ice extent, particularly from summer to

autumn (Serreze and Stroeve 2015). The decreasing

Arctic sea ice has also coincided with a period of more

frequent extreme weather events in midlatitudes of the

Northern Hemisphere (i.e., cold and snowy winters over

parts of Eurasia and North America) (e.g., Liu et al.

2012; Cohen et al. 2012, 2014; Francis and Vavrus 2012;

Mori et al. 2014). Analyses of climate model projections

suggested that the summer Arctic would reach an ice-

free state in the middle of this century under high-

emission scenarios (e.g., Wang and Overland 2012; Liu

et al. 2013; Notz and Stroeve 2016), which offers faster

routes for commercial shipments between Europe/

North America and Asia (Smith and Stephenson 2013;

Melia et al. 2016). Rapid change of Arctic sea ice has

captured attention and posed significant challenges to a

wide range of stakeholders, including maritime safety

and security, resource management and development,

coastal communities, climate change researchers, poli-

ticians, and a growing segment of the general public

(e.g., Stroeve et al. 2014). Hence there is a rising demand

for Arctic sea ice prediction (e.g., Eicken 2013).

Seasonal prediction of Arctic sea ice has been pri-

marily produced with statistical methods in the past (see

http://www.arcus.org/sipn). Some predictions use en-

semble simulations from coupled sea ice–ocean models

with prescribed atmospheric forcings (e.g., Kauker et al.

2009; Zhang et al. 2008). Recently, a few operational

centers have implemented a sea ice model component in

their climate forecast systems for seasonal climate pre-

diction, for example, NCEP Climate Forecast System,

version 2 (CFSv2; Saha et al. 2014). Sea ice prediction

is particularly challenging in the context of fully coupled

climate forecast system. In a fully coupled climate

forecast model, changes in sea ice concentration and

thickness regionally or globally would influence atmo-

spheric and oceanic conditions, which in turn affect sea

ice distribution.

As suggested by sea ice prediction network (Stroeve

et al. 2014), large biases exist in the predicted sea ice

extent and thickness. One of the primary sources of

uncertainty in seasonal sea ice prediction is poorly

known initial sea ice conditions. To reduce such un-

certainty, reliable sea ice observations and a feasible

data assimilation system are required to produce rea-

sonable initial conditions.

Because of the extensive spatial and temporal cover-

age of sea ice concentration, several studies have ex-

plored assimilating satellite-derived ice concentration

into stand-alone sea ice models, coupled sea ice–ocean

models, and fully coupled climatemodels using different

assimilation methods: ensemble Kalman filter by Lisæter
et al. (2003), observational nudging scheme by Lindsay

and Zhang (2006), optimal interpolation by Stark et al.

(2008), three-dimensional variational method by Caya

et al. (2010), and local ensemble singular evolutive in-

terpolated Kalman filter (SEIK) by Yang et al. (2014,

2015). These studies demonstrated that the assimilation

of observed sea ice concentration in the model improves

the simulation of sea ice cover. Some of these studies

also noticed that improvement in the simulation of sea ice

thickness is very small.

To better predict sea ice, accurate sea ice initialization

requires not only sea ice concentration but also variables

(i.e., sea ice thickness) that influence surface energy

fluxes and, thereby, ocean–atmosphere interactions.

Using the June 2015 sea ice prediction from the NCEP

CFSv2 as an example, the forecasted September Arctic

sea ice extent based on an ensemble mean of the NCEP

CFSv2 was 5.73 106 km2 (an estimated error of60.473
106 km2). This forecast removed the model’s systematic

bias based on a statistical regression between what the

NCEP CFSv2 predicts and what is observed. By con-

trast, the forecasted September ice extent from the en-

semblemean of theNCEPCFSv2with revisedMay 2015

initial conditions was 4.6 3 106 km2 (an estimated error

of 60.44 3 106 km2). The initial condition was modified

from the real time of the NCEP CFSv2 each day by

thinning the ice, since it is known that the NCEP CFSv2

is biased toward sea ice being too thick. The latter

method is based on thinning the ice and seeing whether

the extent is thicker than a critical limit. The large dis-

crepancy between two sea ice seasonal predictions

suggests a strong impact of sea ice thickness assimilation

(http://www.arcus.org/sipn/sea-ice-outlook/2015/june; Day

et al. 2014a). At seasonal time scales, the pre-

conditioning of spring sea ice thickness has been shown

to be important for summer sea ice prediction (e.g.,

Wang et al. 2013; Day et al. 2014a,b). Higher pre-

dictability of sea ice thickness with respect to that of sea

ice cover has also been found for at least 2 yr (e.g.,

Holland et al. 2011; Guemas et al. 2014).

Nevertheless, observing sea ice thickness is challeng-

ing owing to its spatial and temporal inconsistency (e.g.,

Kwok and Sulsky 2010). As a consequence, there are

few assimilation studies using satellite-derived sea ice

thickness, especially in fully coupled climate forecast

models, although it has potential for reducing the bias

and improving sea ice prediction as mentioned above.
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The purpose of this study is to assimilate recently com-

puted and validated satellite-based Arctic sea ice

thickness (as well as sea ice concentration) using a re-

cently developed localized error subspace transform

ensemble Kalman filter (LESTKF), which provides sea

ice initial conditions for a fully coupled climate forecast

system. Numerical experiments are then conducted to

examine the impacts of assimilating sea ice thickness

and concentration in combination as well as assimilating

sea ice concentration only on the Arctic sea ice pre-

diction in a fully coupled climate forecast system.

2. Model and data

a. Model

The CFSv2 is a fully coupled atmosphere–land–ice–

ocean model, which was made operational at the NCEP

in 2011 (Saha et al. 2014). The atmospheric component

is the NCEP Global Forecast System with a horizontal

resolution of T126 (;18) and 64 sigma–pressure hybrid

layers vertically. The ocean component is the Geo-

physical Fluid Dynamic Laboratory (GFDL) Modular

Ocean Model, version 4 (MOM4), with a longitudinal

resolution of 0.58, a latitudinal resolution of 0.258 be-
tween 108S and 108N, gradually increasing through the

tropics until becoming fixed at 0.58 poleward of 308S and

308N, and 40 levels vertically (Griffies et al. 2004). A

tripolar grid is utilized in MOM4 (Murray 1996), in

which two poles are located at the landmasses of North

America and northern Siberia, in addition to one at the

South Pole. MOM4 includes a dynamic and thermody-

namic sea ice model, the Sea Ice Simulator (SIS). The

thermodynamics of the SIS is similar to Semtner’s

thermodynamics with three layers vertically (one layer

in snow and two layers in sea ice; Winton 2000). Five

categories of sea ice thickness (0–0.1, 0.1–0.3, 0.3–0.7, 0.7–

1.1, and.1.1m) are used for each grid. A simple scheme

transports ice between categories when the bounds of

thickness in categories are exceeded because of thermo-

dynamic and/or dynamic changes. The dynamics of the

SIS uses the elastic–viscous–plastic rheology to calculate

ice internal stress (Hunke and Dukowicz 1997).

b. Data

The daily Arctic sea ice concentration is obtained

from the National Snow and Ice Data Center, which is

derived from the Special Sensor Microwave Imager/

Sounder (SSMIS), processed by the bootstrap algorithm

(Comiso 2000). Sea ice concentration used here is on

the SSMIS polar stereographic grid with a spatial reso-

lution of 25 km. Tonboe and Nielsen (2010) suggested

that the average uncertainty of sea ice concentration

is ;(10%–15%). Thus, a value of 0.15 is used to repre-

sent observational error, which is also commonly used as

the threshold to define sea ice extent.

The observation of Arctic sea ice thickness is limited

in space and time. Two satellite-derived sea ice thick-

ness products are used here. One product is daily sea

ice thickness derived from the Soil Moisture and Ocean

Salinity (SMOS) brightness temperature using a single-

layer emissivity model (Kaleschke et al. 2012; Tian-

Kunze et al. 2014). The SMOS sea ice thickness,

version 2, is used here (https://icdc.cen.uni-hamburg.de/

thredds/catalog/ftpthredds/smos_sea_ice_thickness/v2/

catalog.html), which is on the NSIDC polarstereographic

grid with a spatial resolution of 12.5 km (Kaleschke

et al. 2016). The uncertainties provided with SMOS

ice thickness dataset are mainly from three sources:

uncertainties of SMOS brightness temperature mea-

surements, uncertainties in the auxiliary dataset, and

assumptions made in the retrieval algorithm. The

SMOS ice thickness has small uncertainty for thin ice

but large underestimation for thick ice because of the

saturation of SMOS brightness temperature with

thickness (Kaleschke et al. 2012; Tian-Kunze et al.

2014). The averaged uncertainty of the SMOS ice

thickness (,1m) is ;0.7m.

The other product is monthly sea ice thickness de-

rived from freeboard measurements from the ESA’s

CryoSat-2 satellite mission (e.g., Laxon et al. 2013). The

CryoSat-2 sea ice thickness (obtained from http://data.

seaiceportal.de) is on the NSIDC polar-stereographic

grid with a spatial resolution of 25 km. The uncertainties

of the CryoSat-2 ice thickness mainly come from free-

board and inadequate knowledge of snow depth and

the radar interaction with snow (Ricker et al. 2014;

Armitage and Ridout 2015). The CryoSat-2 random

ice thickness uncertainty is up to 0.3m considering

the freeboard-to-thickness conversion, and its system-

atic ice thickness uncertainty is;0.6m (;1.2m) for first-

year (multiyear) ice (Ricker et al. 2014).

In this study, we use a simple combination of

SMOS and CryoSat-2 sea ice thickness. Sea ice with

thickness less than 1m in SMOS is retained or otherwise

replaced by CryoSat-2. As discussed above, the aver-

aged uncertainty of the SMOS ice thickness (,1m) is

;0.7m, and the largest uncertainty for theCryoSat-2 ice

thickness is;1.5m (;0.3m for random and1;1.2m for

systematic). Here the largest uncertainty (1.5m) is used

for both the SMOS and CryoSat-2 sea ice thickness.

To assess our assimilation results, independent in situ

sea ice thickness data are needed. Sea ice thickness

measured from the NASA IceBridge mission is used for

the evaluation. IceBridge is an airbornemission with the

primary goal of bridging the gap between the end of
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ICESat in 2009 and the launch of ICESat-2 (Kurtz et al.

2013). Equippedwith laser and radar instruments, IceBridge

provides accurate measurements of sea ice thick-

ness, particularly over level ice. The uncertainty of

themeasured ice thickness is;0.4m (Farrell et al. 2012),

which is much smaller than that of satellite retrievals.

The ice thickness from the NASA IceBridge sea ice

freeboard, snow depth, and thickness quick look dataset

is used here (https://nsidc.org/data/docs/daac/icebridge/

evaluation_products/sea-ice-freeboard-snowdepth-

thickness-quicklook-index.html), covering 14 March

to 2 April in 2012, 21 March to 25 April in 2013, and

12 March to 28 April in 2014. IceBridge covers the

Beaufort Sea, the Canadian Archipelago, and north of

Greenland. Sea ice draft from sea ice mass balance buoy

(IMB) is also used to assess the simulated ice thickness.

Sea ice thickness is estimated from IMB by measuring

the position of the ice bottom and the snow/ice surface

using two sonar systems. The accuracy of the estimated

ice thickness is ;0.1m (Melling et al. 1995; Richter-

Menge et al. 2006). The ice thickness from the ice mass

balance buoy program is used here (http://imb-crrel-

dartmouth.org/imb.crrel/buoysum.htm; Perovich et al.

2017). During the studying period, only one buoy (2013J)

provides data outside the coverage of IceBridge, which

initially deployed in the Laptev Sea and drifted toward the

North Pole from 1March to 15April in 2013 (see Fig. 7 for

its trajectory).

3. Assimilation method and numerical experiment

a. Assimilation method

An ensemble-based LESTKF is employed to assimi-

late satellite sea ice data and is implemented in the

parallel data assimilation framework (PDAF; Nerger

and Hiller 2013). Nerger et al. (2012a) showed that the

error subspace transform Kalman filter (ESTKF) not

only is a variant of SEIK (Pham 2001) but also has

identical ensemble transformation as that of the en-

semble transform Kalman filter (ETKF; Bishop et al.

2001). ESTKF provides consistent projections between

the ensemble space and the error subspace as well as

minimal ensemble transformation of the ensemble

members, which outperforms SEIK and has lower

computation coast (Nerger et al. 2012a). To reduce the

sampling error of the estimated error covariance matrix,

particularly long-range error covariance due to small

ensembles, a regulated localization scheme is applied.

This scheme conducts observation localization by

weighting of the observation error covariance matrix

through a localization function of variable width. For

small errors, it avoids the widening of the effective

localization length that may worsen the assimilation.

Moreover, its additional computational cost is negligible

relative to that of the analysis step (see details in Nerger

et al. 2012b).

LESTKF consists of four steps: initialization, forecast,

analysis, and resampling. Using the year 2012 as an ex-

ample (one of the experiments in this study), for the

initialization step, we generate initial ensembles by in-

tegrating the CFSv2 for onemonth (from 15 February to

15 March), which starts with an optimal analyzed initial

condition generated by the NCEP Climate Forecast

System (the data are available at https://www.ncdc.noaa.

gov/data-access/model-data/model-datasets/climate-

forecast-system-version2-cfsv2#CFSv2 Operational Fore-

casts). For each day, the model state vectors of sea ice

are stored sequentially to form the state matrix. The

second-order exact sampling (Pham 2001) is then ap-

plied to the leading modes of empirical orthogonal

functions (EOFs) of sea ice concentration in the Arctic

to generate nine perturbations overlaid on the mean

state of model trajectories. The nine ensembles provide

an estimate of initial model states and uncertainties

prior to the evolution of forecasts. Once the initial en-

sembles are generated, the forecast step begins, in

which all ensembles are dynamically evolved with the

CFSv2. At the end of the forecast step, the LESTKF

filter analysis is conducted. For the analysis step, the

aforementioned satellite-derived Arctic sea ice con-

centration and thickness are assimilated into the CFSv2,

considering the observational errors and background

uncertainty represented by the spread of model re-

alizations. The analysis step updates the model mean

state and covariance. After that, the ensemble resam-

pling step is conducted, and all ensembles are updated

to new states using the second-order exact sampling

(Pham 2001) while preserving the ensemble mean and

covariance.

b. Numerical experiments

Numerical experiments are performedusing theCFSv2

to examine impacts of the assimilation of satellite-

derived sea ice concentration and thickness on sea ice

forecasts. Three sets of experiments are conducted. The

first experiment is the control simulation without any

assimilation (CTL), which is initialized with the state

ensembles generated in the LESTKF initialization step.

The second experiment is the same as CTL, except that

the assimilation of sea ice concentration and thickness

is performed only once at the beginning, and then the

simulation is continued without further assimilation

(LESTKF-1). The third experiment is the simulation by

repeating the assimilation of sea ice concentration and

thickness every 5 days (LESTKF-E5). In LESTKF-E5,
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the forecast, analysis, and resampling steps alternate

until the end of the simulation. Three hindcasts are car-

ried out from 7 March to 15 April for the years 2012,

2013, and 2014, respectively, given the availability of

IceBridge observations.

As mentioned previously, the sea ice model compo-

nent (SIS) in the CFSv2 uses five categories of sea ice

thickness to describe sea ice thickness distribution.

Thus, each category has a value of fractional ice area.

The aggregated sea ice concentration of a grid cell is the

sum of fractional ice areas for each category �n

i ai,

(where ai is sea ice concentration in each thickness cat-

egory and n5 1, . . . , 5). Similarly, the aggregated sea ice

thickness of a grid cell is�n

i aihi (where ai and hi are sea

ice concentration and thickness for each thickness cat-

egory and n 5 1, . . . , 5). Satellite observations only

provide the aggregated value of the ice concentration

and thickness. After they are assimilated, we use a

simple approach to assign the new aggregated ice con-

centration and thickness to the five categories as the

initial conditions. That is, before the assimilation, the

percentage of the ice concentration and thickness in

each thickness category with respect to the aggregated

value is calculated and stored. After the assimilation, the

new aggregated ice concentration and thickness are re-

assigned to the five thickness categories based on the

precalculated percentage. If the newly assigned ice

thickness in one category is greater (less) than the cor-

responding ice thickness bound, then this category is

shifted to the next (previous) category to meet the

thickness limitation.

In the analysis step, a small influential cutoff distance

of two model grid points (;100 km) is used in the reg-

ulated localization scheme. In addition, the statistical

update of the state estimate under the assumption of

Gaussian errors in the analysis step does not have a

constraint on sea ice concentration and thickness. As a

result, small negative and greater than 1 ice concentra-

tion can occur (i.e., at locations with small forecast

concentration and no ice concentration observation). In

such cases, small negative values are reset to 0, and the

ice concentrations greater than 1 are reset to 1. For any

grid point, if the ice thickness is positive but the ice

concentration is 0, then the ice thickness is set to 0. If the

ice concentration is positive but the ice thickness is 0, a

scheme similar to Tietsche et al. (2012) is used, in which

the ice thickness of 2m is multiplied by the ice concen-

tration. The sea surface temperature is not modified

directly by the assimilation but is updated implicitly

through sea ice and ocean coupling in the CFSv2. A

forgetting factor of 0.98 is used to inflate themodel error

covariance after each data assimilation [see Nerger et al.

(2012a) for details].

4. Results

a. Sea ice extent and concentration

Figure 1 compares temporal evolution of the hindcast

of the ensemble mean of the total Arctic sea ice extent

(left panel) and the averaged root-mean-square error

(RMSE) of sea ice concentration in each grid cell (right

panel). Here the ice extent is calculated as the sum of

the area of each grid cell having ice concentration

greater than 15%. For consistency, we only calculate

RMSE of sea ice concentration for the grid cell having

ice concentration greater than 15%. At the initial stage,

the simulated sea ice extent in CTL differs from the

observation to varying degrees, very close to the SSMIS

in 2012, much (relatively) less than the SSMIS in 2013

(2014). The deviation in the ice extent between the CTL

and SSMIS becomes larger after several days of in-

tegration. Initially, the simulation with one-time sea ice

assimilation (LESTKF-1) provides adjusted ice extent

relatively closer to the observation compared to that

of CTL (orange line vs red line). The simulated ice

extent in LESTKF-1 is also relatively closer to the

SSMIS than that of CTL through the model integra-

tion, although there is a tendency toward that of CTL

after ;3-week integration. By contrast, LESTKF-E5

(every 5-day sea ice assimilation) obviously improves

the ice extent simulation, in which the deviation from

the SSMIS is greatly reduced through the hindcast

(green line).

The RMSE of sea ice concentration (right panel

in Fig. 1) shows that at the initial state as well as the first

2-week integration, large RMSE in CTL is obviously

reduced as a result of the initial sea ice assimilation

in LESTKF-1. After that, LESTKF-1 shows a similar

level of RMSE as that of CTL (orange line vs red line).

By contrast, LESTKF-E5 produces a zigzag RMSE

time series (green line), having much (relatively)

smaller RMSE relative to that of CTL once satellite

sea ice data are assimilated (after ;3-day integration

without further assimilation). Spatially, the above im-

proved hindcast of sea ice extent and reduced RMSE

are primarily achieved in the marginal ice zone in the

North Atlantic and Pacific sectors (not shown). Here we

examine the two-tailed statistical t test to determine

whether differences among the above three hindcasts

are significant. We consider that the time series of

RMSE for the three hindcasts are independent random

samples in normal distribution (Yang et al. 2015).

Hereafter P1, P2, and P3 refer to a statistical p value

between LESTKF-1 and CTL, between LESTKF-E5

and CTL, and between LESTKF-E5 and LESTKF-1,

respectively. They are statistically significant for all
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three years (P1, P2, and P3 5 0.00 , 0.05), suggesting

that assimilating satellite sea ice data effectively im-

proves the sea ice extent/concentration forecast.

b. Sea ice thickness

Figure 2 shows the hindcast of the ensemble mean of

the averaged Arctic sea ice thickness (north of 558N, left

panel) and corresponding RMSE (right panel). At the

initial stage, the simulated ice thickness in CTL is too

thick for all three years with respect to the observation

(a combination of SMOS and CryoSat-2), and this de-

viation is maintained through the model integration.

LESTKF-1 makes the initial ice thickness relatively

thinner compared to that of CTL (orange line vs red

line). After that, similar to CTL, the initial deviation

maintains through the rest of the hindcast. By contrast,

LESTKF-E5 improves the ice thickness simulation re-

markably, in which the deviation is continuously

FIG. 1. (left) Time series of the total Arctic sea ice extent and (right) the averaged RMSE of the simulated sea ice concentration with

respect to the SSMIS observation for (top)–(bottom) 2012, 2013, and 2014. The black line is the SSMIS observation, red line is CTL,

orange line is LESTKF-1, and green line is LESTKF-E5. Color shading represents the spread of their ensemble members.
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reduced, approaching to the observation near the end of

the integration (green line).

The RMSEs of CTL, LESTKF-1, and LESTKF-E5

(right panel in Fig. 2) demonstrate similar temporal

evolution as the ice thickness in 2012 and 2013, although

there are some small variations for RMSEs of CTL and

LESTKF-1 (Figs. 2b,d). The averaged RMSEs of CTL,

LESTKF-1, and LESTKF-E5 are 1.10 (1.26), 1.02 (1.09),

and 0.90 (0.87)m in 2012 (2013). All p values are

statistically significant (P1, P2, and P3 5 0.00 , 0.05),

suggesting that the assimilation is effective to improve

sea ice thickness forecasts. However, there is not much

difference between LESTKF-1 and LESTKF-E5 in

2014, and the hypothesis test suggests that LESTKF-E5

is not significantly different from LESTKF-1 (P3 5
0.14 . 0.05).

As mentioned previously, the satellite-derived sea ice

thickness assimilated in the CFSv2 is a combination of

FIG. 2. As in Fig. 1, but for the (left) mean and (right) RMSE sea ice thickness with respect to SMOS and CryoSat-2 observations and the

black line is the SMOS and CryoSat-2 observations.
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SMOS and CryoSat-2. The observed ice thickness av-

eraged over the studying period shows thick ice (.1.5m,

corresponding to multiyear ice) extending from the

Canadian Archipelago and north of Greenland to the

central Arctic Ocean and thin ice (,1.5m) covering

large parts of the Beaufort, Chukchi, East Siberian, and

Laptev Seas for all three years (first column in Fig. 3).

Apparently, in 2012 and 2013, the simulated ice thick-

ness in CTL (second column in Fig. 3) is too thick in the

entire Arctic Ocean, especially for thin ice. By contrast,

the pattern of the simulated ice thickness in 2014 is very

different from that of 2012 and 2013 (i.e., the ice is ob-

viously thinner in large parts of the Beaufort and

Chukchi Seas and the central Arctic Ocean, which is

closer to the observation). This is also reflected by the

spatial distribution of RMSE with respect to the obser-

vation averaged over the studying period (not shown).

In 2012 (top panel) and 2013 (middle panel), much of the

Arctic Ocean is dominated by large errors, which are

relatively reduced in LESTKF-1 but significantly re-

duced in LESTKF-E5. However, in 2014 (bottom

panel), large errors only locate in the Canadian Archi-

pelago and the East Siberian and Laptev Seas in CTL

and LESTKF-1, although the error is also lowered in

LESTKF-E5 but not as broad as those of 2012 and 2013.

Thus, no significant difference between LESTKF-1 and

LESTKF-E5 in 2014 in Fig. 2 is primarily due to the

change in the distribution of thick ice simulated by the

CFSv2. This suggests that the assimilation of satellite sea

ice data has a strong effect when the simulated spatial

FIG. 3. Simulated sea ice thickness (m) of (from left to right) SMOS andCryoSat-2, CTL, LESTKF-1, and LESTKF-E5 averaged over the

studying period for (top) 2012, (middle) 2013, and (bottom) 2014.
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pattern of sea ice thickness is different from that of the

observation.

c. Evaluation with independent data

The simulated sea ice thickness from the three hind-

casts is further evaluated using independent observa-

tions. First, we compare them with IceBridge airborne

observations. Figure 4 shows spatial distribution of

IceBridge observations and simulated sea ice thickness.

Here the simulated ice thickness is interpolated on

IceBridge unstructured meshes. Note that the over-

lapping of IceBridge samplings may occur at some grid

points for each individual year, which are demonstrated

in the last column in Fig. 4. The ratio between the

overlapped grid points and the total is less than 0.2%,

suggesting that the overlapping is negligible. In general,

CTL (second column) produces much thicker ice in the

Beaufort Sea and relatively thinner ice in the Canadian

Archipelago and north of Greenland for all three years.

This is also the case for LESTKF-1 (third column), al-

though the bias is reduced somewhat in the Beaufort

Sea. By contrast, LESTKF-E5 (fourth column) shows

much better agreement with IceBridge observations in

the Beaufort Sea, but there is no improvement in the

Canadian Archipelago and north of Greenland.

We further analyze the temporal evolution of the

daily statistics of IceBridge and simulated sea ice

thickness. Here the simulated sea ice thickness for each

day having IceBridge observations is interpolated from

the model grid to the IceBridge track. In Fig. 5, the

center of the circle represents the daily mean ice thick-

ness and the radius of the circle represents 0.5 standard

deviations of the ice thickness. In general, the simulated

ice thickness underestimates the observed deviation for

all three years, which is largely because the resolution of

the IceBridge track is higher than the model grid.

Compared to IceBridge, the simulated ice thickness with

sea ice assimilation shows better agreement than that

without any data assimilation, not only for the daily

mean but also for the standard deviation, especially for

LESTKF-E5 (green circle). However, the improvement

is primarily seen before late March. After late March,

the result with sea ice assimilation is even worse than

that without sea ice assimilation. Figure 6 provides the

difference between the simulated and IceBridge ice

thickness after 26 March. During this period, IceBridge

measurements are only located in the north of Green-

land and/or the Canadian Archipelago where the

thickest and most heavily ridged ice is present. In this

area, compared to the observation, the simulated ice

thickness in CTL (first column) and LESTKF-1 (second

column) shows mixed positive and negative biases. By

contrast, LESTKF-E5 (third column) is dominated by

negative bias. This is primarily because theCryoSat-2 ice

thickness assimilated into the model is thinner than

IceBridge ice thicknesses as well as thinner than the

CTL simulation. Nevertheless, we calculate the sea ice

thickness probability density function (PDF) distribution

FIG. 4. Spatial pattern of sea ice thickness from (first to fourth column) IceBridge, CTL, LESTKF-1, and LESTKF-E5 for (top) 2012,

(middle) 2013, and (bottom) 2014. The rightmost column shows IceBridge samplings that are overlapped for each year.
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for the simulation, IceBridge, and their difference (Fig. 7).

It appears that for all three years, the PDF of LESTKF-E5

becomes tighter around IceBridge (Fig. 7, upper panel)

and much more normal-looking compared to that of CTL

and LESTKF-1, which deviate significantly from normal-

ity (Fig. 7, lower panel).

Second, we compare the simulated sea ice thickness

with and without sea ice assimilation against a buoy

measurement outside the coverage of IceBridge (Fig. 8).

Again, without assimilating satellite sea ice data, the

model bias is large (.1.5m) compared to the buoy ob-

servation. LESTKF-E5 agrees best with the observation

during the drifting period with a reduced RMSE of

1.03m. This is also reflected by the PDF of the difference

between the simulated and IceBridge ice thickness (not

shown), suggesting that the assimilation significantly

improves sea ice thickness forecast.

5. Discussion and conclusions

In this study, the ensemble-based local error subspace

transform Kalman filter (LESTKF) is employed in the

NCEP climate forecast model to assimilate 1) sea ice

concentration from SSMIS and 2) sea ice thickness from

a combination of SMOS and CryoSat-2 that provide

basinwide thickness information. Three years (2012,

2013, and 2014) are selected for hindcast experiments.

For each year, three numerical experiments are carried

out, including 1) CTL (without sea ice assimilation),

2) LESTKF-1 (with initial sea ice assimilation), and

3) LESTKF-E5 (with every 5-day sea ice assimilation).

Our results show that compared to CTL, LESTKF-1

improves the prediction of sea ice extent/concentration

and thickness initially, but the initial improvement tends

to gradually diminish after ;3-week integration for the

ice extent, whereas it remains quite steady through the

model integration for the ice thickness. Here, we cal-

culate the autocorrelation coefficient for the time series

of the simulated total Arctic sea ice extent of CTL

(without any sea ice assimilation). It decreases with in-

creasing time, and the sign is reversed after 2–3 week

integration. This suggests that the initial improvement

due to sea ice assimilation may diminish in;(2–3) weeks

in the CFSv2, which might be model dependent. Walsh

and Johnson (1979) examined modes of variability

in Arctic sea ice area and found an autocorrelation

of about 6 days up to 3 months lag for the main modes.

Lukovich and Barber (2007) showed a coherent sea ice

concentration persistence pattern with a time scale of 3–

7 weeks.

FIG. 5. Time series of daily statistics of IceBridge and simulated sea ice thickness for (a) 2012, (b) 2013, and

(c) 2014. The circle centers represent the daily mean ice thickness and the circle radii represent 0.5 standard

deviations: IceBridge (black), CTL (red), LESTKF-1 (orange), and LESTKF-E5 (green).
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LESTKF-E5 improves sea ice concentration and

thickness forecast remarkably. The deviations in both

sea ice extent and thickness in CTL are significantly

reduced and approach the satellite observation by the

end of the hindcast. This would benefit sea ice forecast

beyond the study period. It is also noticed that assimi-

lating satellite-derived sea ice thickness has a strong

effect when the simulated spatial pattern of ice thickness

is different from that of the observation. The compari-

son of the simulated sea ice extent and thickness for each

individual 5 days is also examined since the forecast

duration is 5 days for LESTKF-E5. Here the predictive

skill for each individual 5 days is defined as follows:

12
accumulative bias of X

accumulative bias of CTL
,

where X 5 LESTKF-1 or LESTKF-E5. The closer the

value to 1, the higher the predictive skill. The result

shows that the predictive skill of LESTKF-E5 is higher

than that of LESTKF-1 for each individual 5 days, which

is particularly true for sea ice thickness (not shown).

The modeled sea ice thickness is further evaluated

against independent sea ice thickness observations.

Evaluation with IceBridge measurements shows that

assimilating satellite sea ice data improves the ice

thickness prediction in the Beaufort Sea. Evaluation

with the sea ice mass balance buoy measurement also

confirms significantly improved forecast of the ice

thickness when satellite sea ice data are assimilated. As

mentioned previously, the satellite-derived sea ice

thickness assimilated in the CFSv2 is a combination of

SMOS and CryoSat-2. We also carry out an additional

model experiment for the year 2012. In this experiment,

only SMOS sea ice thickness less than 1m is assimilated

(LESTKF-E5SMOS). In general, the evolution of the

simulated sea ice extent and thickness of LESTKF-

E5SMOS behaves like that of LESTKF-E5. However,

compared to both the satellite and IceBridge observa-

tions, LESTKF-E5SMOS has larger bias and RMSE for

sea ice thickness (as well as sea ice extent/concentration)

than those of LESTKF-E5. It is noted that the assimi-

lation of the CryoSat-2 sea ice thickness is helpful for

reducing the ice thickness bias extending from the

FIG. 6. Difference between simulated sea ice thickness and IceBridge observations from 26 March to 15 April for (top) 2012, (middle)

2013, and (bottom) 2014.
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Canadian Archipelago and north of Greenland to

the central Arctic Ocean simulated by the CFSv2

(not shown).

To provide additional perspective on the predictive

skill, we also examine the simulated sea ice extent

against the persistence prediction. The persistence pre-

diction assumes the forecasted sea ice extent will not

change through the hindcast. We calculate the ratio of

sea ice extent bias (relative to the satellite observation)

between three hindcasts and the persistence prediction.

It appears that the ratio decreases through the model

integration. The predictive skill becomes higher than

that of the persistence prediction after ;(3–4) weeks of

integration. This is particularly true for LESTKF-E5,

which has a much smaller ratio than those of CTL and

LESTKF-1 (not shown).

To further determine to what extent the aforemen-

tioned improved sea ice prediction may result from as-

similating sea ice thickness from SMOS and CryoSat-2,

we perform an additional model experiment for the year

2012, in which only sea ice concentration from the

SSMIS is assimilated every 5 days in the CFSv2

(LESTKF-E5SIC; still nine ensemble members). As

shown in Fig. 9, the simulated ice extent of LESTKF-

E5SIC behaves more like that of LESTKF-1 (blue line

vs orange line in Fig. 9a). The improved skill gradually

diminishes after ;3-week integration, getting close to

CTL, but RMSE in LESTKF-E5SIC is relatively smaller

(but statistically significant) than that of LESTKF-1

(Fig. 9b). The simulated ice thickness of LESTKF-

E5SIC is clearly worse than that of LESTKF-E5

(Fig. 9c), which is also evident in the averaged RMSE

of sea ice thickness (Fig. 9d). Thus, the improvement of

sea ice thickness prediction is minor by only assimilating

sea ice concentration. By contrast, the simulation with

continuous assimilation of sea ice thickness has re-

markably reduced systematic errors over the hindcast

compared to that with sea ice concentration assimilation

only or without any data assimilation. The averaged

RMSE over the studying period has been reduced from

1.08m in LESTKF-E5SIC to 0.90m in LESTKF-E5.

Figure 10 shows the RMSE of the simulated sea

ice thickness and concentration in LESTKF-E5 and

LESTKF-E5SIC with respect to the observations. It

appears that large RMSEs of the simulated sea ice

thickness in the Beaufort, Chukchi, East Siberian, and

Laptev Seas in LESTKF-E5SIC are greatly reduced in

LESTKF-E5 as the satellite ice thickness is assimilated

FIG. 7. The PDFdistribution of the simulated and IceBridge sea ice thickness for (a) 2012, (b) 2013, and (c) 2014: IceBridge (black), CTL

(red), LESTKF-1 (orange), and LESTKF-E5 (green). (d)–(f) As in (a)–(c), but for the PDF of the difference between the simulation and

IceBridge.
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(Fig. 10a vs Fig. 10b). Meanwhile, large RMSEs of the

simulated sea ice concentration in the above areas in

LESTKF-E5SIC are also reduced in LESTKF-E5

(Fig. 10d vs Fig. 10e). This suggests that assimilating

satellite-derived sea ice thickness can improve the pre-

dictive skill of sea ice thickness dramatically, which also

benefits the forecast of sea ice extent/concentration

somehow due to the coupling between the ice thickness

and concentration. For example, change in sea ice

thickness modifies heat transfer from the ocean, and

thinner sea ice results in increased ocean heat loss and

thus further warms the atmosphere.

FIG. 9. Time series of (a) the total sea ice extent (106 km2), (b) the averaged RMSE of the simulated sea ice concentration, (c) the mean

sea ice thickness (m), and (d) its RMSE for only assimilating satellite sea ice concentration: CTL (red), LESTKF-1 (orange), LESTKF-E5

(green), and LESTKF-E5SIC.

FIG. 8. Time series of sea ice thickness from IMB and model simulations for the year 2013.

The buoy’s drifting track is shown in the upper-left box. Black line is the IMBobservation, red

line is CTL, orange line is LESTKF-1, and green line is LESTKF-E5.
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Recent research suggested that the persistence of

sea ice thickness anomalies is much higher than that

of sea ice concentration anomalies (e.g., Blanchard-

Wrigglesworth et al. 2011; Wang et al. 2013; Day et al.

2014a,b). Thus, the corrected state of sea ice thickness

would provide a system memory that allows for forecast

with potential skill over longer periods. The improve-

ment in sea ice prediction could be larger during the

melting season when the covariance between ice thick-

ness and concentration is strong. The SMOS andCryoSat-2

sea ice thickness therefore provide valuable information

to improve thickness forecast when assimilated in sea

ice model components of coupled climate forecast sys-

tems. Currently satellite-derived sea ice thickness

(SMOS and CryoSat-2) is primarily available during the

cold season, since the ice thickness retrieval algorithms

are compromised in summer in the presence of melt.

It is critical to develop datasets of year-round sea ice

thickness, covering broad areas of the Arctic that

would aid in the forecast procedures. A few efforts are

making progress; for example, there is a new approach

to estimate sea ice thickness in summer in the presence

of melt pond (Istomina et al. 2016). An alternative way

to deal with this is to generate sea ice thickness analysis,

like the Pan-Arctic Ice Ocean Modeling and Assimila-

tion System (PIOMAS) sea ice thickness data (Collow

et al. 2015).

In the aforementioned numerical experiments, we use

nine ensemblemembers to representmodel realizations,

compromising between a reasonable model spread and

computational cost. To examine the sensitivity of sea ice

prediction to the number of ensemble members, we

conduct an additional experiment for the year 2012 us-

ing 15 ensemble members (LESTKF-E5EM15) to in-

crease the rank of model ensemble covariance. As

shown in Fig. 11, it is intuitive that a larger model spread

FIG. 10. RMSEs of the simulated sea ice thickness of (a) LESTKF-E5, (b) LESTKF-E5SIC, and (c) their difference (LESTKF-

E5 2 LESTKF-E5SIC). (d)–(f) As in (a)–(c), but for sea ice concentration.
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is evident as the ensemble member increases. Over the

studying period, the agreement of the forecasted ice

extent of LESTKF-E5EM15 is slightly better than that

of LESTKF-E5 (blue line vs green line in Fig. 11a), but

the hypothesis test suggests that the RMSE of the

forecasted ice concentration of LESTKF-E5EM15 is not

significantly (p 5 0.97 . 0.05) different from that of

LESTKF-E5 (Fig. 11b). The predicted ice thickness of

LESTKF-E5EM15 closely resembles that of LESTKF-E5

(Fig. 11c), but the RMSE of the predicted ice thick-

ness of LESTKF-E5EM15 is relatively increased com-

pared with that of LESTKF-E5 (0.94m for the 15-member

ensemble and 0.90m for the 9-member ensemble;

Fig. 11d).

FIG. 11. As in Fig. 9, but for 15 ensemble members (blue line).

FIG. 12. As in Fig. 9, but for integrating the CFSv2 for three months to generate initial ensemble members (blue line).
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Additionally, as mentioned in section 3, for the ini-

tialization step, we generate nine ensembles that pro-

vide estimates of initial model states and uncertainties

prior to the evolution of the hindcast by integrating

the CFSv2 for one month (e.g., from 15 February to

15 March in 2012). Here, we also generate another set

of the initial ensembles by integrating the CFSv2 for

three months (LESTKF-E5MON3) that includes intra-

seasonal sea ice variability and repeat the every-5-day

assimilation experiment for the year 2012 (Fig. 12). It

appears that over the studying period, the prediction of

both sea ice extent (p5 0.46. 0.05) and thickness (p5
0.65 . 0.05) of LESTKF-E5MON3 is not significantly

different from that of LESTKF-E5.

In summary, our experiments demonstrate how sea

ice forecast in the NCEP Climate Forecast System can

be improved by assimilating satellite-derived sea ice

concentration and thickness. Certainly, there are po-

tentials for further optimization and extension—for

example, using different observational errors for SMOS

and CryoSat-2 or spatially varying observational errors

and assimilating additional variables that influence

atmosphere–sea ice–ocean interactions (e.g., sea ice

velocity and sea surface temperature). These will be

investigated in future studies.
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